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Abstract

Inversion of light scattering by a single spherical scatterer with or without a layered
structure is studied. By numerical simulation of the statistical properties of experiments,
we can select those angles that will maximize the ability of the experiment to resolve a
sphere from a layered scatterer. Applying statistical decision theory, we obtain a criterion
for decision making that minimizes the probability of incorrect guesses.
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A I rod.tct i1n

Inversion problems have existed in various branches of engineering and physics for
a lo-n, 1i1me, but in the past twenty years they have received far more attention than ever
before because of the available of high speed computers. !n the present paper, we are
going to invert liiht scatterimn information to recognize an inner structure of a spherical
object. Because intensities of scattering light are highly nonlinear functions of the size and
index of the scatterer, and noise is present, arbitrary pattern recognization is difficult. We
will restrict ourselves to distingtUishinu two kinds of refraction index patterns (uniform or a
layered sphere) with a range of parameters. We assume that the scatterer may be one of
two kinds of objects: a sphere with a uniform refractive index or a layered sphere with
different refraction indices for the core and shell, respectively. Our problems are: (1) For
given experimental conditions, is there enough information to make a decision'? What is
the best choice of angles to yield the most signiticant statistics. (2) For given experimental
data, how should one make a decision that minimizes wrong( guesses.

We assume that we already know the ftollowingz facts: The wave length X of the
light in vacuum is .4416 microns. For the it= uniform sphere (hypotheses 1), the varying
parameters are the radius R" and refraction index n", in the ranges 4<R"/IX•8 and
1.33<n<_" < 1.8. For the 1= layered sphere (hypotheses 2), tile varying parameters are the
inner radius Rin, core and shell refraction indices ni'n and ni ut They are in tile ranges
4_<Rin /X -<-7, 1.33 < n n <- 1.5 and 1.55 !5 n$ •1.8. Tile outer radius ROWt of the layered
sphere is fixed at Ro.ut /X=8. Moreover, we assume there is a Gaussian noise added to the
scattered intensity with a/1=0.1, where T is the width of the intensity distribution of the
Gaussian noise and I is the mean intensity of the light scattered at a given angle.

The method of examining general experimental data to decide between two
hypotheses is a classic problem in decision theory. A procedure in the absence of a priori
information was proposed by Neyman and Pearson' in 1933. Their results are expressed
in terms of "maximum likelihood ratios". An excellent overview is given by Kendall and
Stuart2 . A readable description of the Bayes theorem approach to the same problem is
given by van Trees 3 . The close connection between these two approaches is touched on
by Middleton4 in his section on binary detection systems.

Our problem is more general, in that we must estimate some continuous parameters
first, in order to make the best binary decision. In the present application, these parameters
are radii and indices of refraction. Thus our problem mixes continuous parameter
estimation with discrete parameter detection.

Distinguishability

We propose to study the statistical properties so that we may obtain a crit-rion for
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measuring the distinguishabilitv.

Suppose the experimental light scattering data have been taken at (spherical)
scattering angles Oi and 0=0-; the intensity of the scattering light per unit solid angle is
denoted as 1(Oi). We want to relate the observation information to the structure of the
scatterer. Because noise is always involved and can not be separated from the
experimental data, it will mix the two hypotheses such that they can not be distinguished
when the noise level is relatively high. The noise level depends on the experimental
apparatus, the environment and the kind of data taken. For a given apparatus and
environment, we should measure such data to minimize the relative noise level.

For a single scattering process, the data measured at different angles are not
independent; they are correlated through complex formulas (Mie scattering for it sphere and
shell). Because of the complex relationships of the scattering formulas, we can not
analytically solve and will use numerical simulations to our problem.

Let's say the object is a uniform sphere with the parameter element flJc- {R",n" I
in the allowed range and the experimental observation is taken at M angles 01, .... ,O.

Here M is a moderate number of order 10. We can regard the scattering as a mapping
from the parameter space i(l) to an M dimensional observation space
0LA={I(0 1) ...... I(0,)}. Because noise is present, one point in fl space maps to an M
dimensional "box' in LM space. A similar mapping also applies for a layered object. If, at
each angle Oi, separate measurements with P different polarization intensities are made,
corresponding to different polarization of the incident and scattered beam, then PM will be
the dimension for the observation space. For simplicity of notation, however, we do not
always introduce an explicit polarization index.

In the following, we will define a resolution criterion. First, we generate a set
{r"l(i)} which includes N elements of random parameters TI()., in the allowed ranges for
hypothesis j (j=l for uniform sphere and j=2 for layered object), where m=l,...N. Here N
is a large number of order 1000. The rnth element rTI of the uniform sphere set {I(t)}
has two parameters Ru and n", and the rnth element il of the layered object set {r"1 2 )}
contains three parameters Rimn, nm,in and tm.lout" With the added noise, one image for
each of the two sets {rl0') } and { I(2)} are obtained in the observation space LO. Within
the overlap region of the two images in the observation space LM the two kinds of objects
are indistinguishable from the given M intensity measurements. We will give the definition
of overlap later. An event producing an image in the overlap region of the observation
space is regarded as an indistinguishable event for the two hypotheses. Counting the
number of the events which overlap in the observation space, we may get a measure of
indistinguishability between the two cases. The ratio of the number of overlapped events to
the total number events represents a measure of the indistinguishability.

We study the probability properties of the two hypotheses. In the observation space,
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an image point from one hypothesis can always have a probability of overlap with the an

image of the other kind of hypothesis. Therefore we need to precisely define overlap of
images in the observation space. We use N (1(0)) for the number of events such the
intensity is in the range of 1(0) to 1(0)+dI(0) and N for the total number of events. We
then define an overlap function:

Ft(O lp{r~l} r(2) i)= •/ /tt( , r~ ) )) ýVq(l2)(0,{TI(2)1)) •] /

• N N )/2

where the subscript p denotes the polarization and the superscript (1) and (2) are for
different hypotheses. The set of N (-1000) points in {r(lu} possesses a subset IT1~')(0i)]
which overlap in the sense that it may no longer be possible to distinguish whether case
j=l or j=2 is the correct with respect to a single measurement. We can choose a
threshold cyi,1, of indistinguishability for 0i and measured intensity I1, by using the criteria

F(OiIp;{11 ' )},{11( 2) })->c-i,, for all TlIMQ {iEjI } (2)

to determine the elements of subset [](i)(0i)i. For observations at many angles, the joint
set of subsets for all measured angles

n111(l) (0• 1.. On,) I= l lT0'1 )lA (3)

measures the overall fuzziness of the experiment. As an application, we assume the
measurement is taken at given angles 0=25, 40, 90, 105, 125,140 for two polarizations (12
measurements). For simplicity we set all ocip to be the same caip=ox. In Fig. I we show
the original set (dots) of parameters for the uniform sphere chosen by Monte Carlo
techniques, and its joint subset for 12 measurements (triangles). The ratio of the numbers
of the elements of the joint subset and the original set is about 10%. Therefore, about
90% of uniform sphere events (the dots not covered by the triangle in Fig. 1) are
distinguishable from the layered events in the L 12 space. The superscript 12 is the number
of dimensions of the observation space, that is the number of measurements. The
remaining 10% of the events for the uniform sphere (the triangles in Fig. 1) are
indistinguishable from the layered scatterer for the given set of 12 measurements.

To produces a better resolution between these two hypotheses, a trivial approach is
to increase the number of the detectors so that the events in the new space LM (M>12)
will not overlap as much as in the original space L12 . In most experiments,
distinguishability is limited by the number of detectors. To make the most of the
equipment for a better resolution, one can rearrange the detectors for some optimized
angles so that the number of the elements in the joint subset is minimized. This can be
done by the following iteration procedure: First we randomly generate two parameter sets
{71"1)} and {I"I} as initial sampling sets. Use Eq. (4) below to find the best angle 01 by
taking a minimum of the overlap function F for two polarizations over 01. Substitute 01
and the original sampling sets into Eq. (5), below, to obtain the subsets [rI(t)(0t)] and
[T1(2)(O1)] by Eq. (5). Iterating this procedure by using the new sets [fl(i)(01)1 in Eqs. (4)
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jind (5). we wvill obtain the second best angle 0- and the subset 1fO'(01,02)1. Repeat the
iteration procedure (4) and (5) for angles 01, 0, 0.3, • until tile number of elements of
the joint subset IrTi)(01..0,,)i is less than a desired value. With the optimization
CoMplCted for i-I angles, we can optimaize over 0i using:

Heew1n f I 1, [q(O , T oI t ...... 0i-t)l,[tl t()(0A ...... 0i-1)) (4)
01 p=l 0

0)• (qj)t0 (1..0 - 0 ) i p O~ :;q )(01 ...... 0i-, )l,[rq2)(01 ...... 0i_1))-• p

for all fli)E I(I )(01 .... oi-)1 (5)

Here we assumed that intensities of two polarizations (the subscript p) for each angle have
been measured.

Decision

In this section, we apply statistical decision theory to the inversion problem. Let HtI
and /12 denote the two hypotheses; 1 for the uniform sphere and 2 for the layered sphere.
Suppose we have obtained a set of experimental data for the intensities at several angles
/ep(0i). We want to decide which class (uniform sphere or layered object) the scatterer
belongs to. We can use the least square fit to find the best fit for the hypothesis h:

Vh =min 1lxp(O2)-l(Oi, (h)) 2 (6)

within the permitted parameter space. A simple statistic to decide between these cases can
be chosen as Vl-V 2. Suppose the experimental data are from a uniform sphere, k=l.
Then v I is dominated by the experimental noise, usually a small value, while v2 is a large
value because it is not dominated by noise but by the shift because of an incorrectly
chosen hypothesis. For some experimental data the fitting with wrong hypothesis may be
small if the number of the detectors is not large enough. The wrong fitting value of v
covers a large range of a uniform scale space. Therefore we use a log scale for the statistic

R=loglo(v I/v 2 )

to decide between the two hypotheses. The decision rule can be obtained as follows.
Let's assume we know the the conditional probability P(R I 11h) of getting R under
hypothesis h. According to Neyman-Pearsont-, when a priori probability and the cost of
the decision are unknown, we may use a constraint condition on the probability PF, of a
"false alarm" is:

PF=a-X=IP(R 1H,)dR (7)

to find the threshold X, where c is the value permitted for a false alarm (we say H 2 while
HI is true). After finding the threshold, we shall make decision by the criterion:
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if A(R)>X choose /1, (8)

if A(R)<X choose t1 (9)

where

A(R)=P(R fH1)/P(R f!12) (10)

is the maximum likelihood ratio.

The conditional probabilities, P(R IH1,), can be obtained (ahead of time) by
numerical simulation. As an application, we generate a set consisting of 1000 elements of
random parameters for each hypothesis. We then calculate the intensities of the light
scattering for these parameters at the angles 0=90, 105,, 120, 135, 150, 165 for both parallel
and perpendicular polarizations. Finally we add 10% noise to the calculated intensities and
regard the result as pseudo experimental data. To get the distribution profiles for both
cases, we also use the least square method

is (h) 2
=(hm) lexp (Oi)-l(0i,rq ) (11)

to fit the pseudo experimental data with the best parameter rl("£. Here I;,p was computed
for source s (pseudo experimental data). vs is the best least square fit for a set of
experimental data of source s by the hypothesis h within the permitted paramete. .. Because
we used wide ranges for the parameters, the intensities have hundreds of oscillations over
the varying parameters. It is difficult to locate a global minimum for v', because it has
hundreds of oscillations over the varying parameters. To make the programs more
efficient, we made lookup tables for the Bessel and Legendre functions. Defining
RS-=logo(vS /v`) and counting the number of the events in which Rs falls into the interval
.R,R+dR), denoted as N(RS), we obtain the distribution profile for the source s. In Fig. 2,

N(Rs) vs Rs is plotted for both sources. The left profile of this figure is for the source
s=l the uniform sphere, while the right one is for the source s=2 the layered object. The
small overlap between the two curves in Fig. 2. shows that the resolution of these two
cases is quite good.

1J. Neyman and E. S. Pearson, "On the Problem of the Most Efficient Tests of Statistical
Hypotheses," Philosophical Trans. A, 231, 289 (1933)2 M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Volume 2 tIafner

Publishing Co, New York (1967)
3H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, John Wiley and
Sons, (1968)

4 David Middleton, Introduction to Statistical Communication Theory, McGraw-Hill
(1960)
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Fig. 2. Distribution profiles. The vertical axis is N(R-) the number of events per unit R,
dR=0.1 is used. The left profile is the distribution profile for tbe appropriate for uniform
spherical source, while the right one is for the layered scatterer. The measurements are
taken for the intensities of two polarizations (parallel and perpendicular) at 6 angles
0=90, 105, 120, 135, 150, 165 with 10% noise. The uncertainty of the parameter ranges
are follows: For the sphere, the two parameters are the radius and refraction index in the
ranges of 4_RU/X<_8 and 1.33<n"<_1.8. For the layered object, the three parameters are
the inner radius and refraction indices in the ranges of 4•_Ril/X.<_7, 1.33-<5in_<l.5 and
1.55_<n1 <1.8.
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